18,599 research outputs found

    Coupling of pion condensate, chiral condensate and Polyakov loop in an extended NJL model

    Full text link
    The Nambu Jona-Lasinio model with a Polyakov loop is extended to finite isospin chemical potential case, which is characterized by simultaneous coupling of pion condensate, chiral condensate and Polyakov loop. The pion condensate, chiral condensate and the Polyakov loop as functions of temperature and isospin chemical potential are investigated by minimizing the thermodynamic potential of the system. The resulting (T,μI)(T,\mu_I) phase diagram is studied with emphasis on the critical point and Polyakov loop dynamics. The tricritical point for the pion superfluidity phase transition is confirmed and the phase transition for isospin symmetry restoration in high isospin chemical potential region perfectly coincides with the crossover phase transition for Polyakov loop. These results are in agreement with the Lattice QCD data.Comment: 15pages, 8 figure

    List (d,1)-total labelling of graphs embedded in surfaces

    Full text link
    The (d,1)-total labelling of graphs was introduced by Havet and Yu. In this paper, we consider the list version of (d,1)-total labelling of graphs. Let G be a graph embedded in a surface with Euler characteristic ϵ\epsilon whose maximum degree Δ(G)\Delta(G) is sufficiently large. We prove that the (d,1)-total choosability Cd,1T(G)C_{d,1}^T(G) of GG is at most Δ(G)+2d\Delta(G)+2d.Comment: 6 page

    Statefinder hierarchy exploration of the extended Ricci dark energy

    Full text link
    We apply the statefinder hierarchy plus the fractional growth parameter to explore the extended Ricci dark energy (ERDE) model, in which there are two independent coefficients α\alpha and β\beta. By adjusting them, we plot evolution trajectories of some typical parameters, including Hubble expansion rate EE, deceleration parameter qq, the third and fourth order hierarchy S3(1)S_3^{(1)} and S4(1)S_4^{(1)} and fractional growth parameter ϵ\epsilon, respectively, as well as several combinations of them. For the case of variable α\alpha and constant β\beta, in the low-redshift region the evolution trajectories of EE are in high degeneracy and that of qq separate somewhat. However, the Λ\LambdaCDM model is confounded with ERDE in both of these two cases. S3(1)S_3^{(1)} and S4(1)S_4^{(1)}, especially the former, perform much better. They can differentiate well only varieties of cases within ERDE except Λ\LambdaCDM in the low-redshift region. For high-redshift region, combinations {Sn(1),ϵ}\{S_n^{(1)},\epsilon\} can break the degeneracy. Both of {S3(1),ϵ}\{S_3^{(1)},\epsilon\} and {S4(1),ϵ}\{S_4^{(1)},\epsilon\} have the ability to discriminate ERDE with α=1\alpha=1 from Λ\LambdaCDM, of which the degeneracy cannot be broken by all the before-mentioned parameters. For the case of variable β\beta and constant α\alpha, S3(1)(z)S_3^{(1)}(z) and S4(1)(z)S_4^{(1)}(z) can only discriminate ERDE from Λ\LambdaCDM. Nothing but pairs {S3(1),ϵ}\{S_3^{(1)},\epsilon\} and {S4(1),ϵ}\{S_4^{(1)},\epsilon\} can discriminate not only within ERDE but also ERDE from Λ\LambdaCDM. Finally we find that S3(1)S_3^{(1)} is surprisingly a better choice to discriminate within ERDE itself, and ERDE from Λ\LambdaCDM as well, rather than S4(1)S_4^{(1)}.Comment: 8 pages, 14 figures; published versio

    Effect of weak measurement on entanglement distribution over noisy channels

    Full text link
    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.Comment: 15 pages, 9 figures. Minor revision has been mad
    corecore